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Beginning of deep learning

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever ('eoﬂ'rev E. Hinton
University of Toronto University of Toronto Unive: of Toronto

kriz@cs.utoronto a@cs.utoronto hinton@cs.utoronto

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%.
compared to 26.2% achieved by the second-best entry.
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Al in biomedical field

Big biomedical data*

Attention Is All You Need
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Big biomedical data
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Big genomics data

THE CANCER @
GENOME ATLASNS

Human genome project

100,000 genomes club

K¢ 8K Genomics 22,
4 England :SSS:

Q FINNGEN

Multiple genomics/proteomics
data of >11,000 samples from
33 cancer types

The
Precision
Medicine
Initiative
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THE FUTURE OF HEALTH BEGINS WITH YOU
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Histopathological images
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What can we do with big data”

Diagnosis

Prognosis

Therapeutics




Traditional approach

Diagnosis

Prognosis

Therapeutics




Cancer diagnosis by H&E images

Hematoxylin and Eosin
(H&E) images

It has been instrumental for medical diagnosis

TNM staging:
Stage 1, 2, 3and 4



Prognosis by clinical stage

Stage 1 &2
Stage 3
Stage 4

Stage at Diagnosis 5-Year Relative Survival (%) |

All Stages

Localized
Regional
Distant

Unstaged

9.2

33.8

19.8

4.2

11



Current limits on pathology

Annotatlon by pathologists
Labor intense task: not scalable

» Subijectivity and Variability: not robust

» No annotations for other cell types such as immune
cells

Clinical staging:
« Discrepancies between clinical stage and true
extent of a disease

Build deep learning models to identify cell types on H&E images
p Stanford
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Precision Medicine by genomic info

jbmucos

Epithelum

Diagnosis

Prognosis

Thera peutics Genomic/Proteomic Profiling
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What can we do with genomic data”

Diagnosis

Prognosis

Therapeutics

« Cancer Susceptibility: BRCA1 and BRCA2
» Liquid biopsies: circulating tumor DNA in blood



What can we do with genomic data”

Diagnosis

Prognosis

Therapeutics

« BRAF V600E mutations in melanoma tumors
« High tumor mutation burden (TMB)



What can we do with genomic data”

Diagnosis

Prognosis

.  Vemurafenib: BRAF V60OOE mutations in melanoma tumors
Therapeutlcs « Herceptin: HER2 mutation
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Al In genomics analysis

The primary goal of genomic analysis:
» |dentify genomic alterations in cancer tissues from sequencing data
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= Real case of Al applications in Cancer Treatment



How to treat colon advanced cancers?

Caner patients with advanced stages

= %i

Surgery
Chemotherapy
Radiotherapy
Targeted therapy
Immunotherapy




How to treat colon advanced cancers?

Caner patients with advanced stages

s

* Immunotherapy

The response rate to immune checkpoint inhibitor: 20%

Who will response??



Markers for responders

=  Microsatellite Instable (MSI) or high tumor mutation burden (TMB)

Responder

MSI-H cancers

Better marker or indicator?
= Tumor infiltrating lymphocytes (TILSs)



How to assess TILS?

» Locate the immune cells in tumor regions
« Urgent need of Al applications




Challenges in Al application
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Our solution: molecular staining
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Training images for deep learning model

Molecular labeling is

scalable and robust

Non-Cancer Tiles (n=8782)

Uncertain Tiles (n=23275)

‘ Training Convolutional
Neural Network (CNN)

Cancer Tiles (n=21939)

~20-50 histology images: >10K images of each
cell type

Traditional
approach

>10K gastric cancer
images

The number of histology
images per each
category >10K

>10K normal tissue
images




eep learning model for cancer cells
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H&E Predictions

npj ‘ Precision Oncology wwwnature.cominpiprecilononcology

ARTICLE  OPEN (Do)
A deep learning model for molecular label transfer that enables
cancer cell identification from histopathology images

Andrew Su'®, HoJoon Lee (%%, Xiao Tan (3, Carlos J. Suarez®, Noemi Andor**, Quan Nguyen (' and Hanlee P. Ji**™

Deep-learning classification systems have the potential to improve cancer diagnosis. However, development of these
computational approaches so far depends on prior pathological annotations and large training datasets. The manual annotation is
low-resolution, time-consuming, highly variable and subject to observer variance. To address this issue, we developed a method,
H&E Molecular neural network (HEMnet). HEMnet utilizes immunohistochemistry as an initial molecular label for cancer cells on a
H&E image and trains a cancer classifier on the overlapping clinical histopathological images. Using this molecular transfer method,
HEMnet successfully generated and labeled 21,939 tumor and 8782 normal tiles from ten whole-slide images for model training.
After building the model, HEMnet accurately identified colorectal cancer regions, which achieved 0.84 and 0.73 of ROC AUC values
compared to p53 staining and pathological annotations, respectively. Our validation study using histopathology images from TCGA
O 8 4 samples accurately estimated tumor purity, which showed a signif 9 i ient of 0.8) with the estimati
N based on genomic sequencing data. Thus, HEMnet il to ing two main in cancer deep-learning analysis,
namely the need to have a large number of images for training and the dependence on manual labeling by a pathologist.
HEMnet also predicts cancer cells at a much higher i to manual hi: i ion. Overall, our method
provides a path towards a fully automated delineation of any type of tumor so long as there is a cancer-oriented molecular stain
available for subsequent learning. Software, tutorials and interactive tools are available at:https://github.com/ ’r d

BiomedicalMachineLearning/HEMnet
npj Precision Oncology ( i.org/10. 022-00252-0
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Technologies for other cell types

OUTPUT: IMAGES OF SINGLE CELL RESOLUTION OF UP TO 30
PROTEINS —ex 2

Data from Cell profiling Facility using CODEX

Xenium 10X genomics CODEX, multiplexed single-cell
imaging technology

Annotating H&E images with many different cell types
including immune cells



Clinical decision with pathological images
Do

Yes No

Q Immune cells in g

tumor sites

e Cancer vaccines

Immune-check point inhibitor *  T-cell therapy

Reactivating

: Enhancing immune
immune response

response by education




How vaccines work?

How vaccines work

Weakened or dead disease bacteria introduced into the patient, often
by injection

If patient encounters dlsease later, antibodies neutralise the invading cells

XA

Need targets!

|I https://www.bbc.co.uk/news/world-48186856
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How vaccines work?

How vaccines work

Weakened or dead disease bacteria introduced into the patient, often

by injection

White blood cells triggered to produce antibodies to fight the disease
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If patient encounters d|sease later, antibodies neutralise the invading cells
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Need targets!

COVID-19

-= -~

RNA

HE-Protein &=
\

M-Protein

Envelope

https://theconversation.com/covid-vaccines-focus-on-
the-spike-protein-but-heres-another-target-150315

https://www.bbc.co.uk/news/world- P Stanford
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Targets for cancer cells?

Cancer cells

https://www.medicalnewstoday.com/articles/244845

Non-self molecules

(Neoantigens)



What is neo—antigen?

/ Normal Cell

* MUC1 — post-translational modification
" * ERBB2/HER2/neu — aberrantly expressed

Self Antigens
. 3 3 af L
* Hepatitis B virus (HBV) N v.. V//.’

* Human papilloma virus (HPV) ~ -
* Mutated p53

Non-self (Neo) Antigens . | b b b ’\ }\
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Source of (endogenous) neoantigens

Genetic alterations

 Point mutations

- silent, missense, nonsense

Insertion/deletion (Indels)

Splicing variants

Copy number variations (CNVs)

- Amplifications/deletions of genomic regions

Chromosomal rearrangements

- (Gene fusions
g Stanford



Which mutations are good targets?

Tumor cell

Colorectal Cancer
: ~70 mutations / patient

Which mutations should be in vaccine?




Biological process of presenting neoantigen

1. Antigen 2. Antigen 3. Antigen 4.TCR
__Expression Processing Presentation Recognition

Which mutations can
produce peptides that
will be presented on the
cell surface?




Expressed mutations

Mutated DNA

t RNA

Which mutations in RNAseq?

Mutations produce mutant peptides



Which mutations will be on cell surface?

Mutated DNA
« MHC highly variable across people

\\ \\ - 3 different alleles / person
\ \\ - HLA-A, HLA-B, HLA-C
A - 3 ~ 6 MHCs per person
/ Aberrant RNA

Mutant- \

peptides

c'il Major histocompatibility complex (MHC)



Prediction of binding affinity
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Analysis pipeline for good targets

Mutated DNA

r--—7< \ \ We need only
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Which | / RNA Process Presentation
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I
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: Binding
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can predict the structure and
interactions of all life's molecules

Immune cell profile /
checkpoint




summary

Genomic and image data is able to quide to make better clinical decision

. Presence of tumor infiltrating e
-y ymphocytes (TILs) mm)  Checkpoint inhibitors

+

|dentification of necantigens ,
> Cancer vaccine

N Cell Therapy

Amount of immune cells
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Cancer stages at diagnosis

Localized 65.9 29.1 33.4

Regional/distant 32.3

How to treat them effectively?

https://progressreport.cancer.gov/diagnosis/stage
Estimation based on 2021

How fo detect
cancer earlier?


https://progressreport.cancer.gov/diagnosis/stage

Future perspectives GRA

L

Genomic data 8 natera

Tumor DNA
Immune DNA

Prevention
(by early detection)

Best treatment for
patients
(Precision Medicine)

New Drug

Molecular data: LLM on EHR
Protein, Antibody, small molecules

DATA IS KI NG I ' Building Toward Virtual Cells

Wearable Devices

access to centralized Al

o
ing and using state-of-the-art cell




